This question paper contains 7 printed pages]
Roll No. \square
S. No. of Question Paper : 45

Unique Paper Code : $\mathbf{3 2 1 7 1 5 0 2}$
Name of the Paper : Physical Chemistry-V : Quantum
Chemistry and Spectroscopy
Name of the Course : B.Sc. (Honours) Chemistry
Semester : V
Duration: $\mathbf{3}$ Hours
Maximum Marks: 75
(Write your Roll No. on the top immediately on receipt of this question paper.)

Answer six questions in all.
Question No. 1 is compulsory.
Attempt at least two questions from each section.
Attempt all parts of a question together.
Use of scientific calculators is allowed but they cannot be shared.
Logarithmic tables can be provided if required.
Physical Constants :

Planck's Constant	$6.626 \times 10^{-34} \mathrm{Js}$
Velocity of Light	$3 \times 10^{8} \mathrm{~ms}^{-1}$
Avogadro's Number	$6.023 \times 10^{23} \mathrm{~mol}^{-1}$
Mass of Electron	$9.1 \times 10^{-31} \mathrm{~kg}$
Nuclear Magneton	$5.05 \times 10^{-27} \mathrm{JT}^{-1}$
Bohr Magneton	$9.27 \times 10^{-24} \mathrm{JT}^{-1}$
Boltzmann Constant	$1.38 \times 10^{-23} \mathrm{JK}^{-1}$

Attempt any five :
(a) What is the essential condition for a molecule to be microwave active? Which of the following molecules will show a microwave rotational spectrum : $\mathrm{H}_{2}, \mathrm{HCl}$, $\mathrm{CH}_{4}, \mathrm{SF}_{6}$.
(b) Determine whether or not the operators $x^{2} \frac{d^{2}}{d x^{2}}$ and $\frac{d^{2}}{d x^{2}}$ commute. What is the significance of commutation ?
(c) If A and B are two atoms bonding along the z -axis, predict giving reasons which of the following orbitals can combine :
(i) $2 s(\mathrm{~A})$ and $2 p_{z}(\mathrm{~B})$
(ii) $1 s(\mathrm{~A})$ and $2 s(\mathrm{~B})$.
(d) Explain briefly the appearance of hot bands in the infrared spectroscopy. Explain the effect of increase in temperature on the intensity of hot bands.
(e) The bond length decreases on removing an electron from O_{2} but increases on removing an electron from N_{2}. Explain.
(f) Explain the significance of Born-Oppenheimer approximation. Write the Hamiltonian operator for hydrogen atom using Born-Oppenheimer approximation.
(g) What is accidental degeneracy ? Explain with an example.

Section A

(a) Find the expectation values of (i) x (ii) p_{x} (iii) p_{x}^{2} for a particle of mass m, in a one-dimensional box of length
l, having the solution :

$$
\Psi_{n}=\sqrt{\frac{2}{l}} \sin \left(\frac{n \pi x}{l}\right)
$$

Give the physical significance of each expression.
(b) Prove that the solutions with $n=1$ and $n=2$ for a particle in a box are orthogonal to each other.
(c) Determine the value of x at which the ground state wave function, Ψ for the harmonic oscillator exhibits a maxima.

Given :

$$
\Psi=\left(\frac{a}{\pi}\right)^{\frac{1}{4}} \exp \left(\frac{-\alpha x^{2}}{2}\right)
$$

3. (a) Determine the energy of H atom using the trial wave function $\Psi=e^{-a r}$ where a is an adjustable parameter and r is the distance of the electron from the nucleus.

Given :

$$
\int_{0}^{\infty} r^{n} e^{-a r} d r=\frac{n!}{a^{(n+1)}}
$$

(b) Discuss Bohr correspondence principle with respect to the behaviour of wave function of simple harmonic oscillator (SHO). Illustrate using its probability density plots.
(c) Sketch $\mathrm{R}(r)$ and $4 \pi r^{2} \mathrm{R}^{2}(r)$ Vs. r / a_{0} for $3 p$ orbital for hydrogen atom. Calculate the number of radial nodes in this orbital.
(a) Molecular orbital theory gives equal weightage to covalent and ionic structure whereas valence bond theory ignores ionic character. Explain using the trial wave function of H_{2} molecule.
(b) Benzene may be taken as a two-dimensional box of edge length 0.4 nm consisting of six π electrons. Calculate the energy required for the promotion of an electron from the ground to the first excited state of benzene.
(c) Normalize the given wave function:

$$
\Phi_{m}=\exp (i m \phi)
$$

What is the significance of quantum number m with respect to hydrogen atom ? 6,3,3

5 (a) A rigid rotator consists of two particles of mass m_{1} and m_{2} joined by a rigid rod of length, r. Based on classical considerations, show that the total energy of a rigid rotator is $L^{2} / 2 I$, where L is the angular momentum and I is the moment of inertia. How does this result differ from quantum mechanical result ?
(b) Define Hermitian operator. Show that $\frac{d^{2}}{d x^{2}}$ is a Hermitian operator.
(c) Under what conditions, the wave function Ψ is said to be an acceptable wave function? What is the physical significance of Ψ^{2} ?

Section B

6. (a) Given that the nuclear spin quantum number of ${ }^{12} \mathrm{C}_{0}$ is zero and that of ${ }^{1} \mathrm{H}_{1}$ is half :
(i) Calculate the nuclear angular momentum of these nuclei.
(ii) How many different energy states do these nuclei have in a magnetic field ?
(iii) Calculate the magnetic moment of ${ }^{\prime} \mathrm{H}_{1}$. Given : $g=5.585$.
(b) What are the characteristics of TMS which makes it useful as a reference in PMR spectrum ?
(c) Based on free electron model, calculate the wave number for the longest wavelength transition in pentadienyl radical. Given : $\mathrm{C}-\mathrm{C}$ is 154 pm ; $\mathrm{C}=\mathrm{C}$ is 135 pm .
7. (a) A molecule AB_{2} has the following infrared and Raman spectra :

$\overline{\mathbf{v}}\left(\mathrm{cm}^{-1}\right)$	Infra-red	Raman
519	Active	Active (polarized)
1151	Active	Active (polarized)
1361	Active	Active (depolarized)

Giving proper explanation arrive at the geometry of the molecule. Assign the wave numbers to specific vibrations.
(b) The vibrational wave number of the following molecules in their $v=0$ states are $: ~ \mathrm{HCl}: 2885 \mathrm{~cm}^{-1} ; \mathrm{DCl}:$ $1990 \mathrm{~cm}^{-1} ; \mathrm{D}_{2}: 2990 \mathrm{~cm}^{-1}$ and HD : $3627 \mathrm{~cm}^{-1}$. Using the concept of zero point energy calculate the energy change in $\mathrm{kJ} \mathrm{mol}^{-1}$ of the reaction :
(c) Stokes and anti-Stokes lines in pure rotational Raman spectrum have similar intensities while Stokes lines are more intense than anti-Stokes lines in vibrational Raman spectrum. Explain.
8. (a) The low resolution NMR spectrum of $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$ exhibits three absorptions at δ values of $3.2,2.1$ and 1.2 with relative intensities 1:3:6 respectively. Predict the structure of the molecule giving reasons. Draw and explain the NMR spectrum expected under high resolution.
(b) Discuss the concept of natural line width of spectral line. It is quiet significant in case of ESR compared to that of electronic transition, explain.
(c) Sketch the ESR spectra of p-benzoquinone in low resolution and high resolution.
9. Write short notes on any three of the following :
(a) Larmor precession
(b) Effect of isotopic substitution on rotational spectrum.
(c) Variation theorem
(d) Spin-spin coupling

$$
\mathrm{HCl}+\mathrm{D}_{2} \rightarrow \mathrm{DCl}+\mathrm{HD}
$$

[This question paper contains - printed pages]
Sr. No. of Question Paper
Unique Paper Code
Name of the Course
Name of the Paper
Semester

Duration: 3 Hours
Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. Do any five questions.
3. All questions carry equal marks.
4. (a) Name the following complexes according to IUPAC system of nomenclature:
(i) $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~N}_{2}\right]^{3+}$
(ii) $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{NCS}\left(\mathrm{NH}_{2}\right)\right] \mathrm{NO}_{3}$
(iii) $\left[\mathrm{Ni}(\mathrm{acac})\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{4}\right] \mathrm{NO}_{3}$
(iv) $\left\{\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right\}_{2}\left[\mathrm{MoBr}{ }_{5} \mathrm{~N}\right]$
(v) $\left[\left(\mathrm{Cl}_{3} \mathrm{TlCl}_{2} \mathrm{THCl}_{3}\right](\mathrm{PO} \text { क })_{2}\right.$

$$
\mathrm{K}_{6}\left[\mathrm{Cl}_{3} \mathrm{TlCl} \mathrm{ClCl}_{3}\right]
$$

(vi) $\left[\mathrm{Fe}(\mathrm{en})_{3}\right]\left[\mathrm{Ni}(\mathrm{CN})_{5}\right]$
(b) Write the formulae of the following complexes:
(i) Triammineaquadichlorochromium(III) Phosphate
(ii) Cesium hexafluorophosphate(V)
(iii) Hexaanminenickel(II) hexachlorocobaltate(III)
(c) A solution containing 2.674 g of $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6} \cdot \mathrm{Cl}_{3}$ was passed through a cation exchanger. The chloride ion solution thus obtained, gave 4.305 g of AgCl precipitate with AgNO_{3} solution. Determine the correct formula of the complex and give its structure on the basis of Werner's theory.
(d) Calculate in $\mathrm{KJ} \mathrm{mol}^{-1}$ the crystal field stabilization energy (CFSE) attained by Fe^{2+} in an octahedral oxide ion environment. Given Δ_{0} for Fe^{2+} in an oxide environment is 124 KJ mol^{-1}. What will be the CFSE in a tetrahedral environment of oxide ion.?
2. (a) A complex compound with molecular formula $\mathrm{MCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}$ forms two type of colored crystals, viz., red(A) and blue (B). 1 mole of A reacts with 1 mole of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ to give 2 moles of a white precipitate; B , does not react with $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$. Draw the structure of complexes.
(b) Given below are the Latimer diagrams for iron in acid and alkaline media:

(i) In which medium, acidic or alkaline, is the oxidation of Iron(II) to Iron(III) thermodynamically easier?
(ii) Is iron (VI) more stable in acid or alkaline solution?
(iii) Will acidic ferrous oxidize $\mathrm{H}_{2} \mathrm{O}_{2}$ to oxygen, in acid solution? : Given $\mathrm{E}^{0}\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{O}_{2}\right)=-0.70 \mathrm{~V}$
(c) Both $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ appear colorless in dilute solutions. Suggest a suitable explanation for this observation.
(d) Compare the ionic radii of divalent $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$ and Cu in an octahedral environment.
3.(a) Find out the magnetic moment of Pr^{3+} (Atomic Number of $\operatorname{Pr}=59, \mathrm{~L}=5$).
(b) Draw the geometrical isomers of $\left[\operatorname{Ir}(\mathrm{Py})_{3} \mathrm{Br}_{3}\right]$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{PyClBr}\right]$
(c) When pentaamminecarbonatocobalt(III) complex is treated with NaNO_{2} and dil. HCl , an unstable red colored compound, (A), is formed. If this compound is heated or conc. HCl is added, a yellow colored stable compound, (B), is formed. Both the compounds are isomers. Name the type of isomerism and also write the structures of both the compounds.
(d) On acidifying the solution of ammonium metavanadate, compound A , is obtained. When compound A , is treated with SO_{2}, a deep blue solution, (B), is obtained. Shaking the solution (A) with zinc amalgam, results in a violet solution (C). Mixing solutions (B) and C, in equal amounts, a green solution (D) is obtained. Identify A, B, C and D and write down the reaction of acidification of ammonium metavanadate.
F
4. (a) What happens when:
(i) Ammonium dichromate is heated.
(ii) A 30% solution of hydrogen peroxide is added to an alkaline solution of potassium Chromate.
(iii) SO_{2} is passed through alkaline $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ solution.
(iv) Titanium tetrachloride reacts with ethanol in the presence of ammonia.
(v) An aqueous solution of a Mn (II) salt is oxidized by powerful oxidizing agent like sodium bismuthate in presence of dilute nitric acid.
(b) Explain why, the absorption band of cerium (III) ion is broad, while that of other lanthanide ions is sharp.
(c) What type of spinel structure do you expect for $\mathrm{NiFe}_{2} \mathrm{O}_{4}$.

5 (a) Using VBT, predict the geometry and magnetic moment of the following species:
(i) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{4-}$
(ii) $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$
(iii) $\left[\mathrm{FeCl}_{4}\right]^{-}$
(b) When a pink aqueous solution of Co (II) salt is treated with aqueous ammonia, a blue precipitate, (A), is formed, which dissolves forming a yellow brown solution, (B), with an excess of the reagent. On standing in air, this solution turns red, (C). Compound (C) can also be prepared by passing air in an aqueous solution of $\mathrm{Co}(\mathrm{II})$ in presence of $\mathrm{NH}_{4} \mathrm{Cl}$ and activated charcoal. If activated charcoal is omitted, than brown coloured compound (D) is formed. If compound (D) is oxidized by $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$, green coloured compound (E) is formed. Identify A to E and write the reaction involved in the preparation of compound, C , by passing air in $\mathrm{Co}(\mathrm{II})$ in the presence of $\mathrm{NH}_{4} \mathrm{Cl}$ and activated charcoal.
(c) Copper shows +1 and +2 oxidation states whereas gold shows +1 and +3 oxidation states. Why?

6 Explain which complex in each pair of the following will have:
(a) Greater stability:
(i) $\left[\mathrm{Cu}(\text { en })_{3}\right]^{2+}$ and $\left[\mathrm{Cu}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$;
(ii) $\left[\mathrm{Cr}(\mathrm{en})_{3}\right]^{3+}$ and $\left[\mathrm{Cr}(\mathrm{dien})_{2}\right]^{3+}$ $($ dien $=$ diethylenetriamine $)$.
(b) Greater liability :
(i) $\left[\mathrm{Fe}(\text { bipy })_{3}\right]^{2+}$ and $\left[\mathrm{Fe}(\text { bypy })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$;
(ii) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ and $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
(c) Chromium(II) fluoride and manganese(II) fluoride, both have a central metal ion surrounde d by six fluoride ligands. All the $\mathrm{Mn}-\mathrm{F}$ bond lengths are all equal whereas two $\mathrm{Cr}-\mathrm{F}$ bonds are shorter than the remaining four. Explain giving diagram on the basis of CFT.
(d) Which will have higher 10 Dq value and why?

$$
\begin{equation*}
\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \text { or }\left[\mathrm{NiCl}_{4}\right]^{2-} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left[\mathrm{Rh}^{\left.\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} \text { or }\left[\mathrm{Ir}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}}\right. \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-} \text { or }\left[\mathrm{Cr}(\mathrm{en})_{3}\right]^{3+} \tag{iii}
\end{equation*}
$$

7 (a) Draw the molecular orbital diagram of $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ and explain its magnetic behavior.
(b) Write down the structure of chiral complex $\left[\mathrm{Co}\left\{(\mathrm{OH})_{2} \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\right\}_{3}\right]^{6+}$.
(c) Although Fe^{3+} has five unpaired electrons but $\left[\mathrm{FeF}_{6}\right]^{3-}$ is colorless. Explain.
(d) Although lanthanides are almost identical in (+3) oxidation state, they are effectively separated by ion-exchange method. Explain.
(c) The density of the elements of 5d-transition series is almost twice as compared to the elements of 4 d transition series. Explain?

SA-NO. 7 QP. 1595

12
102

Unique Paper Code:
Name of the Paper
Name of the Course

Semester

Duration : 3 hours
Maximum Marks : 75 Marks

Instructions for Candidates

The Paper has three sections. Section A is compulsory. Attempt at least two questions from each of sections B and C. Attempt six questions in all. Graph paper may be used wherever required. Use of scientific calculator is allowed.

Planck's Constant - $6.626 \times 10^{-34} \mathrm{Js}$
Velocity of Light $-3 \times 10^{8} \mathrm{~ms}^{-1}$
Avogadro's Number $6.023 \times 10^{23} \mathrm{~mol}^{-1}$

Section A

Q. 1 Answer any five

i Explain the unusually high mobility of H^{+}and OH^{-}ions.
ii What is meant by an inhibition step in a chain reaction mechanism?
iii Discuss the change in molar conductivity with dilution of weak electrolytic solutions.
iv Write three basic postulates of Collision theory of reaction rates.
v Explain the use of wetting agents.
vi Write three main differences between photochemical reaction and thermo-chemical reactions.
vii Describe briefly the three explosion limits of a non-stationary chain reactions.

Section B

Q. 2
a) In a Hittorf's experiment HCl solution was electrolyzed between $\mathrm{Ag} / \mathrm{AgCl}$ electrodes. The solution contained $400 \mu \mathrm{~g} \mathrm{HCl}$ per gram of water. In this solution 2 mA current was passed for 150 min . After electrolysis the solution in the cathodic compartment contained 0.025 g HCk in 50 g of solution. Calculate the transport number of H^{+}and Cl^{-}ions.
()...nk tio following application of conductance measurements,

Determination of ionic product of water.
14 Determmation of solubility product.
.) How the conductance and equivalent conductance of the given solution is determined andinhally. Describe the electric circuit of the instrument and the apparatus used. Hylain all the principle involved of the instrument and apparatus.
(1) (1) 117 ut mus! be the concentration of HCl and NaCl in a solution if the transference number of H^{-}is 0.5 . Given the limiting molar conductivities of $\mathrm{Na}^{+}, \mathrm{H}^{+}$and Cl^{-}are $50.1,349.8$ and $70.35 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively:
(ii) Define mobility of an ion in a solution.
b) (i) The conductivity of a saturated solution of CaF_{2} at $18^{\circ} \mathrm{C}$ is $4.2 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$. The molar conductivity of water used here is $2.0 \times 10^{-6} \mathrm{~S} \mathrm{~cm}^{-1}$. The limiting molar conductivities of Ca^{2+} and F are 104.0 and $48.0 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. Calculate the solubility and solubility product of CaF_{2}.
c) Explain the principle involved in the conductometric titration of strong acid and strong base and the weak acid and strong base.

Q. 4

a) (i) Calculate the ionic product of water if the molar conductivities of $\mathrm{H}^{+}, \mathrm{OH}^{-}$and water is given as $349.8,198.5$ and $5.54 \times 10^{-8} \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
(ii) At $18^{\circ} \mathrm{C}, \wedge_{\mathrm{m}}^{\circ}$ for NaNO_{3} is $105.2 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ and $\lambda^{\circ}{ }_{\mathrm{m}}$ for $\mathrm{NO}_{3}{ }^{-}$ion is $61.7 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. Ealculate the transport number of Na^{+}in this solution
b) Write short note on (i) Photosensitisation, (ii) Chemical Actinometry.
c) Describe the relevance of parameters " A " and " B " qualitatively of Debye-Huckel-Onsagar equation. Explain under what external conditions the conductance approaches the limiting values.

Section C

Q. 5
a) (i) What is the change in half life period of second order reaction if the initial concentration changes from 0.025 M to 0.001 M .
(ii) Find the activation energy if the rate of reaction increase by a factor of 1.41 , when the temperature increase from 293 K to 300 K .
b) The integrated rate law of a second order reaction $3 A \rightarrow B$ is of the form
$[A]=[A]_{0} /\left(1+k T[A]_{0}\right)$. (Symbols have their usual meanings) Deduce the integrated rate equation for the change in concentration of $B,[B]$ with time.
c) The decomposition of Azomethane

$$
\mathrm{CH}_{3} \mathrm{~N}_{2} \mathrm{CH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}+\mathrm{N}_{2}
$$

took place at 600 K . The variation in partial pressure of azomethane is given below. Confirm that this reaction is first order reaction and find out rate constant and half life period for the decomposition.

$\mathrm{tecomposition}$.					
t / s	0	1000	2000	3000	4000
p / Pa	10.9	7.63	5.32	3.71	2.59

Q. 6
a) For the photochemical reaction of H_{2} and Br_{2}

$$
\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}
$$

the following reaction mechanism is suggested.

$$
\begin{aligned}
& \mathrm{Br}_{2} \xrightarrow{\mathrm{k}_{1}} 2 \mathrm{Br} \\
& \mathrm{Br}+\mathrm{H}_{2} \xrightarrow{\mathrm{k}_{2}} \mathrm{HBr}+\mathrm{H} \\
& \mathrm{k}_{3}
\end{aligned}
$$

$$
=\quad \mathrm{H}+\mathrm{Br}_{2} \xrightarrow{\mathrm{k}_{3}} \mathrm{HBr}+\mathrm{Br}
$$

$$
\begin{gathered}
\mathrm{HBr}+\mathrm{H} \xrightarrow{\mathrm{k}_{4}} \mathrm{H}_{2}+\mathrm{Br} \\
\mathrm{k}_{5} \\
\mathrm{Br}+\mathrm{Br} \rightarrow \mathrm{Br}_{2}
\end{gathered}
$$

Using steady state approximation deduce the following rate law
$\frac{\mathrm{d}[\mathrm{HBr}]}{\mathrm{dt}}=\frac{2 \mathrm{k}_{3}\left(\mathrm{k}_{1} / \mathrm{k}_{5}\right)^{1 / 2}\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{1 / 2}}{1+\left(\mathrm{k}_{4} / \mathrm{k}_{3}\right)\left\{[\mathrm{HBr}] /\left[\mathrm{Br}_{2}\right]\right\}}$
b) Laplain Lindemann time lag theory of collision theory of reaction rates. On this basis explain why a second order reaction follows first order kinetics when we lower the pressure in
gascous state.
C) Explain briefly the general acid base catalysis and specific acid base catalysis.
Q. 7
a)
i) Discuss the characteristics of enzymatic reactions.
ii) Explain the temperature coefficient of reaction rates.
b) NO_{2} gas is adsorbed on silica to the extent of $0.85 \mathrm{~cm}^{3} \mathrm{~g}^{-1}$ at 500 kPa and 190 K but at 250 K
the same extent of adsorption was achieved the same extent of adsorption was achieved when pressure was 3.5 MPa . What is the molar enthalpy of adsorption?
c). Describe the Moving boundary method for determination of transport number.
Q. 8
a) Derive Gibbs Adsorption Equation.
$\begin{array}{ll}\text { b) (i) Explain the difference between Fluorescence and Phosphorescence. } & 4 \\ \text { (ii) Comment on free energy } & 2\end{array}$ (ii) 10 ml of solution of 0.0495 M oxalic acid and 0.01 M uranyle sulphate was in 1 with E.M. radiation of $2540 \AA$. After the solution absorbed 88 J of 0.01 M uranyle sulphate was irradiated concentration of oxalic acid was reduced to 0.0383 M . Calculate the quation energy the photochemical decomposition of oxalic acid. 0.0383 M . Calculate the quantum yield of
[This question paper contains 2 printed pages.]
Sr. No of Question Paper : 1874
Unique Paper Code
Name of the Paper
Name of the Course
Semester
Duration
: 2171502
: Organic Chemistry
[Carbohydrates. Sectuscopy, \& Dyes]
: B.Sc. (Hons.) Chemistry FYLP
: V

Maximum Marks
: 3 Hours
: 75
(Write your Roll No. on the top immediately on receipt of the question paper) Question No. 1 is compulsory. Attempt six questions in all.

1. Answer any five of the following:
(a) Differentiate between auxochrome and chromophore by taking suitable examples.
(b) Why TMS (Tetramethylsilane) is chosen as reference compound in NMR spectroscopy?
(c) What are the characteristic feature of a dye?
(d) Convert D-Glucose into D-Fructose.
(e) How many types of chemically equivalent protons are there in $\mathrm{CH}_{3} \mathrm{CHClCH}_{2} \mathrm{CH}_{3}$. Give reason.
(f) = Explain the mechanism of mutarotation.
(g) Indicate the conditions under which the following changes take place?

Leuco base \leftrightarrows Color base \leftrightarrows Dye
2. (a) Explain the uses of I.R. spectroscopy in the differentiation of compounds having inter- and intramolecular hydrogen bonding.
(b) 1-Butene shows $C=C$ stretching at $1650 \mathrm{~cm}^{-1}$ in its IR spectrum whereas 1.3 Butadiene shows $C=C$ stretching at $1610 \mathrm{~cm}^{-1}$. Explain giving reason.
(c) Nitrobenzene absorbs strongly at 1525 and $1350 \mathrm{~cm}^{-1}$. Assign these peaks to the corresponding vibrational frequencies.
3. (a) Calculate the $\lambda_{\text {max }}$ value for the following compounds giving details (Any three)
(i)

Values for calculation:
Heteroannular diene $=214 \mathrm{~nm}$
Acyclic/Six membered cyclic α, β - unsaturated ketone $=215 \mathrm{~nm}$
Homoannular diene $=253 \mathrm{~nm}$
Alkyl substituent or ring residue $=5 \mathrm{~nm}$
Exocyclic double bond $=5 \mathrm{~nm}$
Extended conjugation $=30 \mathrm{~nm}$
(b) Identify the geometric isomers of stilbene $\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{5}\right)$ from their $\lambda_{\max }$ values of 294 nm and 274 nm , giving reasons for the assignment?
(c) Compare the PMR spectrum of ordinary (impure) ethanol and pure ethanol. Give reason for the difference ?
4. An organic compound A with molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$ showed the following data:
$\operatorname{UV}\left(\lambda_{\max }\right)=288 \mathrm{~nm}, \varepsilon=24$
IR very strong band at $1715 \mathrm{~cm}^{-1}$
NMR : $\delta 2.0(3 \mathrm{H}$, singlet), $1.0(9 \mathrm{H}$, singlet).
(i) Calculate double bond equivalence.
(ii) Explain
(1) UV transition
(2) IR absorption band
(3) NMR peaks along with splitting pattern.

Give the structure of the compound.
5. (a) * Give one synthesis of Indigo from anthranilic acid or aniline.
(b) Explain the yellow green fluorescence produced by fluorescein dye.
(c) Write down the possible structures of Phenolphthalein in:
(i) Acidic medium
(ii) Alkaline medium
(iii) Strongly alkaline medium

Explain in which medium will Phenolphthalein be pink in color and why ? $[4,4,4]$
6. (a) Explain Amadori rearrangement for the formation of fructosazone from D-
(b) What are reducing and non-reducing sugars? Explain with the help of suitable structures and give one example for each category.
(c) What is epimerisation? Suggest a method for the conversion of D-glucose to Dmannose.
7. (a) Calculate the approximate wave number of the fundamental absorption peak due to the stretching vibration of the $\mathrm{O}-\mathrm{H}$ group. Force constant for $\mathrm{O}-\mathrm{H}$ group $=7.7 \times 10^{5} \mathrm{dyne} / \mathrm{cm}$

Reduced mass $=9.41 \times 1.67 \times 10^{-24} \mathrm{~g}$.
(b) $\quad \mathrm{C}=\mathrm{O}$ stretching in IR of acetone comes $\ldots, \quad=\mathrm{the} \mathrm{C}=0$ swetching in acetamide $\left(\mathrm{CH}_{3} \mathrm{CONH}_{2}\right)$ comes at $1680 \mathrm{~cm}^{-}$. Give reacco
(c) Explain why the absorption bands in UV part- zenarally broad when compared to the absorption bands in IR spectr- - ?
8. Write short notes on the following (any three):
(a) Mordant Dyes
(b) Anisotropic effects in alkenes
(c) Phthalein dyes
(d) Biological importance of carbohydrates

